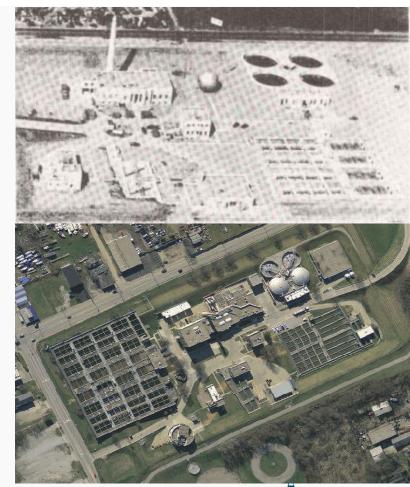


Reliable Preliminary Treatment for Little Miami WWTP

By: Nicholas Jones, P.E., MSDGC and Brad Olson, P.E., Arcadis

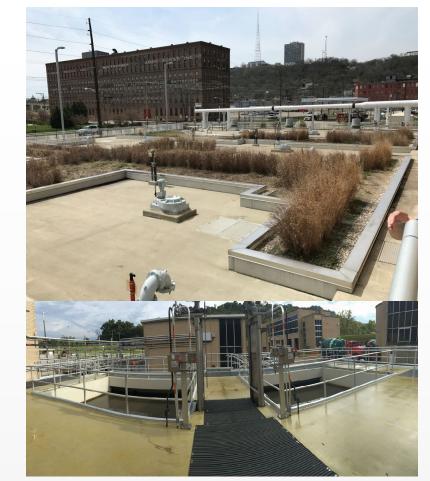
Outline

- Treatment Plant and Project Background
- Short Timeline
- Design Considerations
- Construction Challenge
- Project Takeaways
- Questions


Treatment Plant and Project Background

Little Miami WWTP

- Built in 1953 as Cincinnati's first WWTP
- Treats Eastside of Cincinnati and Hamilton County
- Combined and sanitary systems
- 55 MGD permitted treatment capacity
- Conventional Primary and Secondary Treatment
 - Stacked Secondary Treatment System
- Consent Decree calls for increase of plant capacity
- Two early work (Bridge) projects at Little Miami WWTP
 - Preliminary Treatment Improvements Phase A
 - Electrical Improvements Phase A

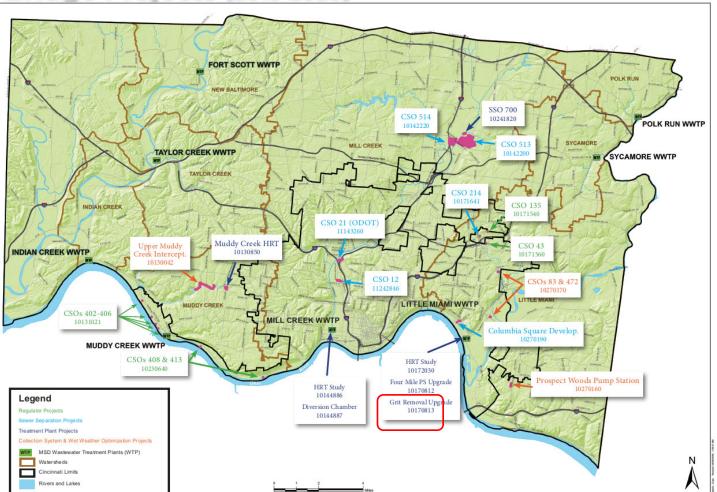


Recent Grit Projects Within MSD

- Mill Creek
 - Conical Propeller Vortex Grit Tanks
 - Six Total Tanks
 - Capacity of 360 MGD

Muddy Creek

- Eutek Grit Tray System
- Two Total Tanks
- Capacity of 35 MGD

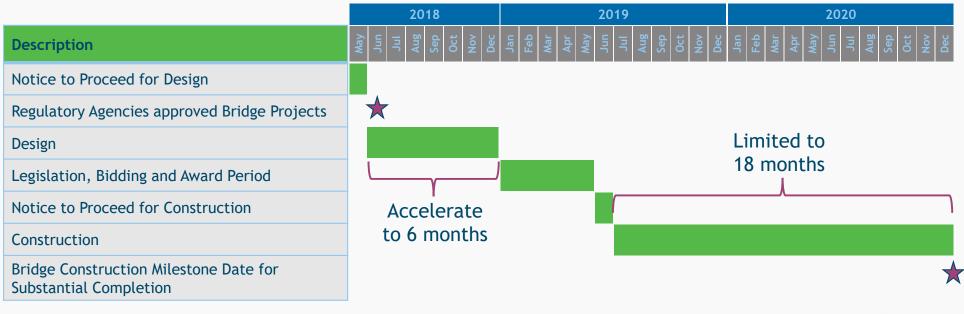

Issues with Screening and Grit

Screening System

- Issues with leaf loading in fall
- Poor performing screenings handling
- Equipment reached the end of useful life
- Fine screening needed for future improvements
- Desire to standardize screening equipment

Grit System

- Poor flow splitting during wetweather
- Poor grit removal performance
- Replacement equipment is hard to obtain
- Poor performing grit handling system
- Grit influent channel had significant grit deposition


Bridge Projects (2018-2020)

Short Timeline

- 26 projects totaling \$61 million (2006\$)
- Fills the gap between Phase 1 completion and negotiation of Phase 2A

Preliminary Treatment Improvements accelerated schedule

Met the Consent Decree deadline while maintaining plant operations at permitted 55 MGD - 2 tanks in service at all times

How was it possible to design and construct facility in 2.5 years?

• Design:

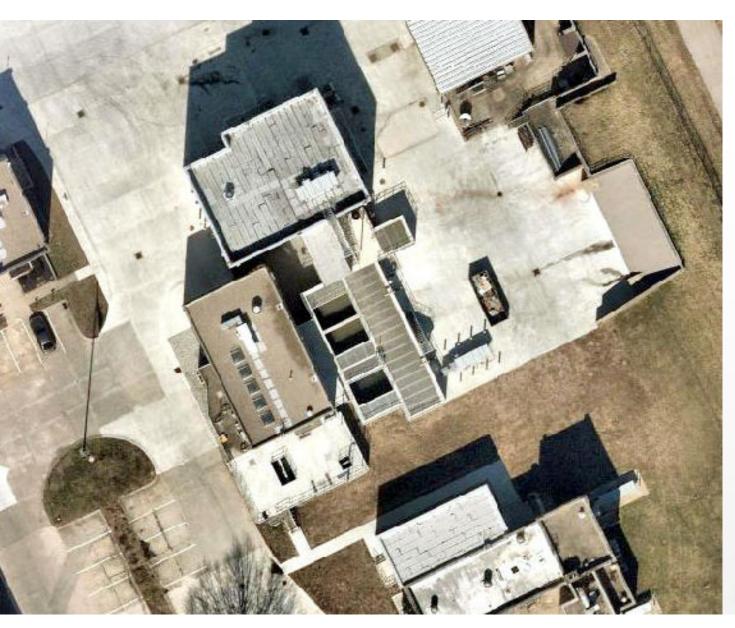
- Replaced 30/60/90 submittals with 50/90 submittals
- At 50% submittal commitment from MSD that process and key decisions would be locked in
- Timely MSD reviews from Engineering and Treatment

• Construction:

- Phased shutdowns to utilize existing space
- Electrical building and 2 grit tanks had Partial Substantial Completion deadline
- Liquidated damages based on consent decree penalties

2019

- Three grit Detritor tanks
 - Capacity of 40 MGD
 - 40' x 40' x 3'
 - Two original to plant
 - One additional tanks installed in 1996
- Five medium climber screens
 - Installed in 1996
 - 1/2 in. openings
 - Conveyor to dumpster in building



2020

- First grit Detritor tank demolished
- Under construction •

 - Three grit tanks
 Grit Handling Building
 - Electrical Building

2021

- Three tray style grit removal units
 - Hydro Eutek Headcell (vortex tray type) grit concentrators
 - Standardized equipment with Muddy Creek
- New Solids Handling building
- New LMPS Electrical building
- Five Chain and Rake Fine Screens replaced in existing building

Design Considerations

Design Considerations - Sizing

Understand the application

- Combined versus separate systems
- Influent flow versus grit loading
- Optimized/adjust the recognized capacity to fit the application
 - Work within existing hydraulic profile
 - CFD modeling documents flow imbalance
- Ultimately, units derated to account for peak grit load and flow imbalance

Wet Weather Characterizations

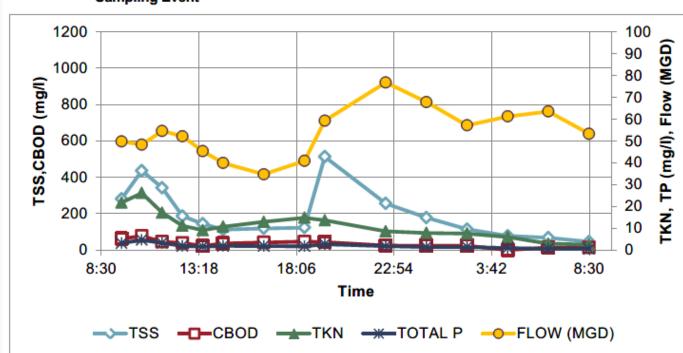



Figure 2-6 Wet Weather Influent Pollutant Concentrations, April 11, 2013 Wet Weather Sampling Event

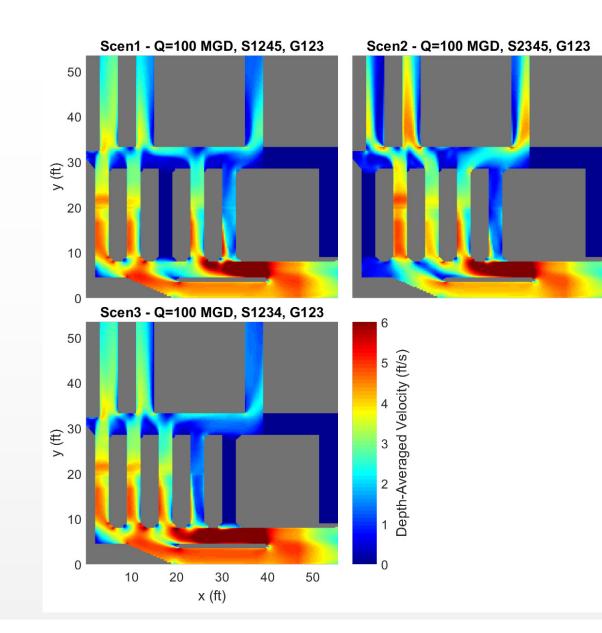
- First flush response after 5 to 6 hours with flows of 50 MGD
- Second peak of TSS due to a second flow surge above 70 MGD further scours solids in collection system

CFD Modeling

- Geometry optimization
 - 4 case studies to identify mitigation during design
- Operations analysis 3 scenarios for each flow rate
 - 100 MGD High
 - 4 screens and 3 grit tanks
 - 35 MGD Average
 - 3 screens and 2 grit tanks
 - 12 MGD Low
 - 2 screens and 1 grit tank

CFD Modeling -100 MGD

Demonstrates flow imbalance through the existing 5 screening channels (4 in service) and proposed 3 grit tanks.


Screening (100/4 = 25 MGD)

- Lowest 8.4 MGD
- Highest 36.2 MGD

Grit Tanks (100/3 = 33 MGD)

- Lowest 19.5 MGD
- Highest 44.4 MGD

All scenarios show unbalanced flows

Design Consideration: Grit Unit Sizing

- Grit equipment typically rated with clean sand particle
- Actual grit can have grease and oil attached or variable shapes and sizes
 - Changes specific gravity and settling characteristics
- Grit distribution within the flow is not uniform
- Grit units at Little Miami purposefully oversized
 - Previous experience on other MSD projects
 - Designer successfully used this tactic on previous projects
 - Rating factor of 1.5
 - Hydraulic capacity of 150 MGD but rated capacity of 100 MGD

Overall Design Considerations

• Don't be afraid to oversize grit equipment

- Grit characterization study
- Pilot grit removal systems
- Consider sensitivity of downstream processes to grit
- Cost
- Flow splitting

Model your system

- CFD
- Physical model if possible

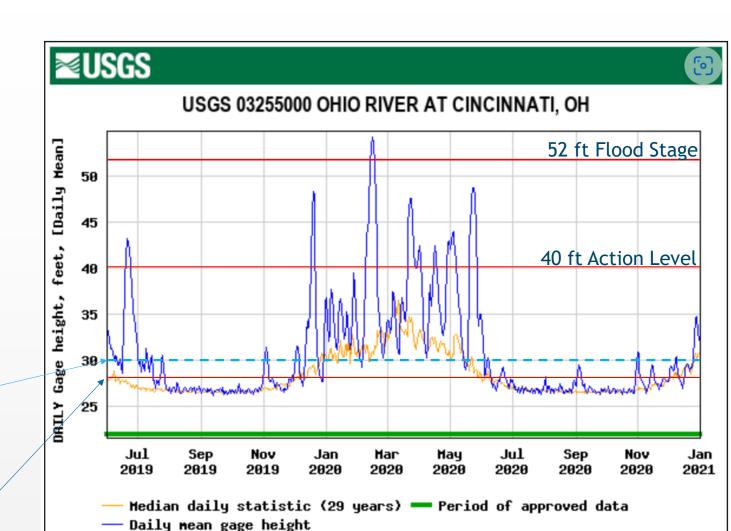
• More NPW

- Flushing connections
- Fluidizing water
- Equipment redundancy
- Cleaning considerations
- Get creative with existing space

Construction Collaboration

Ohio River Flood Stage

- Heavy rainfall during winter 2019-2020
- Location of the Ohio River to the plant


Foundation depth of

459.5 ft equates to

River Stage of 30 ft

 Flooding due to groundwater infiltration

> 28 ft Normal Pool Stage (Average)

Means and Methods

- Underground seam allowed ground water to infiltrate grit tank excavation site
- Overwhelmed groundwater pumping system
- Caused damage to Influent Screen Building as a result of settling
- Mitigation:
 - Grouted area around Screen Building
 - Installed a more robust temporary wall to allow for construction within the Grit Pumping Room

Project Takeaways

- Collaboration is key for accelerated projects
- Understand the application
- Oversize your grit system
- Redundancy
- Means and methods versus risk management

Questions

Nicholas Jones, P.E.

513-244-1365 nicholas.jones@cincinnati-oh.gov

Brad Olson, P.E.

513-543-4003 bradley.olson@arcadis.com

